Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

FMC: Formalization of Natural Language Mathematical Competition Problems (2507.11275v1)

Published 15 Jul 2025 in cs.CL

Abstract: Efficient and accurate autoformalization methods, which leverage large-scale datasets of extensive natural language mathematical problems to construct formal language datasets, are key to advancing formal mathematical reasoning. In this paper, we propose an autoformalization pipeline based on LLMs with error feedback, achieving a fully automatic and training-free formalization approach. Using this pipeline, we curate an Olympiad-level dataset aligning natural language problems with Lean formalizations. The dataset comprises $3,922$ mathematical problems in natural language and $9,787$ in Lean, of which $64.46\%$ were assessed as at least above-average quality, making it suitable as a benchmark for automated theorem provers. Additionally, we investigate the formalization and reasoning capabilities of various LLMs and empirically demonstrate that few-shot learning, error feedback, and increasing sampling numbers enhance the autoformalization process. Experiments of three automated theorem provers on the \dataset\ dataset also highlight its challenging nature and its value as a benchmark for formal reasoning tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.