Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

LogTinyLLM: Tiny Large Language Models Based Contextual Log Anomaly Detection (2507.11071v1)

Published 15 Jul 2025 in cs.LG, cs.AI, and cs.CV

Abstract: Log anomaly detection using traditional rule based or deep learning based methods is often challenging due to the large volume and highly complex nature of log sequence. So effective way of detection of anomalous sequence of logs is crucial for system maintenance and development. This paper proposes parameter efficient finetuning specifically low rank adaptation (LoRA) and adapter based approaches for finding contextual anomalies in sequence of logs in large log data set. It compares different tiny LLMs on the Thunderbird dataset. The results show that LoRA based finetuning provides substantial performance improvements of 18 to 19 percentage over LogBert based full finetuning approach, achieving accuracy scores between 97.76% and 98.83% compared to 79.37%.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube