Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Biological Processing Units: Leveraging an Insect Connectome to Pioneer Biofidelic Neural Architectures (2507.10951v1)

Published 15 Jul 2025 in cs.NE and cs.AI

Abstract: The complete connectome of the Drosophila larva brain offers a unique opportunity to investigate whether biologically evolved circuits can support artificial intelligence. We convert this wiring diagram into a Biological Processing Unit (BPU), a fixed recurrent network derived directly from synaptic connectivity. Despite its modest size 3,000 neurons and 65,000 weights between them), the unmodified BPU achieves 98% accuracy on MNIST and 58% on CIFAR-10, surpassing size-matched MLPs. Scaling the BPU via structured connectome expansions further improves CIFAR-10 performance, while modality-specific ablations reveal the uneven contributions of different sensory subsystems. On the ChessBench dataset, a lightweight GNN-BPU model trained on only 10,000 games achieves 60% move accuracy, nearly 10x better than any size transformer. Moreover, CNN-BPU models with ~2M parameters outperform parameter-matched Transformers, and with a depth-6 minimax search at inference, reach 91.7% accuracy, exceeding even a 9M-parameter Transformer baseline. These results demonstrate the potential of biofidelic neural architectures to support complex cognitive tasks and motivate scaling to larger and more intelligent connectomes in future work.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com