Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 TPS
Gemini 2.5 Pro 39 TPS Pro
GPT-5 Medium 36 TPS
GPT-5 High 36 TPS Pro
GPT-4o 74 TPS
GPT OSS 120B 399 TPS Pro
Kimi K2 184 TPS Pro
2000 character limit reached

MH-FSF: A Unified Framework for Overcoming Benchmarking and Reproducibility Limitations in Feature Selection Evaluation (2507.10591v1)

Published 11 Jul 2025 in cs.LG, cs.AI, cs.CR, and cs.PF

Abstract: Feature selection is vital for building effective predictive models, as it reduces dimensionality and emphasizes key features. However, current research often suffers from limited benchmarking and reliance on proprietary datasets. This severely hinders reproducibility and can negatively impact overall performance. To address these limitations, we introduce the MH-FSF framework, a comprehensive, modular, and extensible platform designed to facilitate the reproduction and implementation of feature selection methods. Developed through collaborative research, MH-FSF provides implementations of 17 methods (11 classical, 6 domain-specific) and enables systematic evaluation on 10 publicly available Android malware datasets. Our results reveal performance variations across both balanced and imbalanced datasets, highlighting the critical need for data preprocessing and selection criteria that account for these asymmetries. We demonstrate the importance of a unified platform for comparing diverse feature selection techniques, fostering methodological consistency and rigor. By providing this framework, we aim to significantly broaden the existing literature and pave the way for new research directions in feature selection, particularly within the context of Android malware detection.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube