Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Repairing Language Model Pipelines by Meta Self-Refining Competing Constraints at Runtime (2507.10590v1)

Published 11 Jul 2025 in cs.SE, cs.AI, and cs.IR

Abstract: LLM (LM) pipelines can dynamically refine their outputs against programmatic constraints. However, their effectiveness collapses when faced with competing soft constraints, leading to inefficient backtracking loops where satisfying one constraint violates another. We introduce Meta Self-Refining, a framework that equips LM pipelines with a meta-corrective layer to repair these competitions at runtime/inference-time. Our approach monitors the pipeline's execution history to detect oscillatory failures. Upon detection, it invokes a meta-repairer LM that analyzes the holistic state of the backtracking attempts and synthesizes a strategic instruction to balance the competing requirements. This self-repair instruction guides the original LM out of a failing refining loop towards a successful output. Our results show Meta Self-Refining can successfully repair these loops, leading to more efficient LM programs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)