Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
44 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
105 tokens/sec
DeepSeek R1 via Azure Premium
83 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Natural Language-based Assessment of L2 Oral Proficiency using LLMs (2507.10200v1)

Published 14 Jul 2025 in eess.AS, cs.AI, and cs.CL

Abstract: Natural language-based assessment (NLA) is an approach to second language assessment that uses instructions - expressed in the form of can-do descriptors - originally intended for human examiners, aiming to determine whether LLMs can interpret and apply them in ways comparable to human assessment. In this work, we explore the use of such descriptors with an open-source LLM, Qwen 2.5 72B, to assess responses from the publicly available S&I Corpus in a zero-shot setting. Our results show that this approach - relying solely on textual information - achieves competitive performance: while it does not outperform state-of-the-art speech LLMs fine-tuned for the task, it surpasses a BERT-based model trained specifically for this purpose. NLA proves particularly effective in mismatched task settings, is generalisable to other data types and languages, and offers greater interpretability, as it is grounded in clearly explainable, widely applicable language descriptors.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.