Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
38 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
518 tokens/sec
Kimi K2 via Groq Premium
188 tokens/sec
2000 character limit reached

Tiny Reward Models (2507.09973v1)

Published 14 Jul 2025 in cs.CL and cs.AI

Abstract: Large decoder-based LLMs have become the dominant architecture for reward modeling in reinforcement learning from human feedback (RLHF). However, as reward models are increasingly deployed in test-time strategies, their inference costs become a growing concern. We present TinyRM, a family of small, bidirectional masked LLMs (MLMs) with as few as 400 million parameters, that rival the capabilities of models over 175 times larger on reasoning and safety preference modeling tasks. TinyRM combines FLAN-style prompting, Directional Low-Rank Adaptation (DoRA), and layer freezing to achieve strong performance on RewardBench, despite using significantly fewer resources. Our experiments suggest that small models benefit from domain-specific tuning strategies, particularly in reasoning, where lightweight finetuning methods are especially effective. While challenges remain in building generalist models and conversational preference modeling, our preliminary results highlight the promise of lightweight bidirectional architectures as efficient, scalable alternatives for preference modeling.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)