Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Sequence-Model-Guided Measurement Selection for Quantum State Learning (2507.09891v1)

Published 14 Jul 2025 in quant-ph, cs.AI, and cs.LG

Abstract: Characterization of quantum systems from experimental data is a central problem in quantum science and technology. But which measurements should be used to gather data in the first place? While optimal measurement choices can be worked out for small quantum systems, the optimization becomes intractable as the system size grows large. To address this problem, we introduce a deep neural network with a sequence model architecture that searches for efficient measurement choices in a data-driven, adaptive manner. The model can be applied to a variety of tasks, including the prediction of linear and nonlinear properties of quantum states, as well as state clustering and state tomography tasks. In all these tasks, we find that the measurement choices identified by our neural network consistently outperform the uniformly random choice. Intriguingly, for topological quantum systems, our model tends to recommend measurements at the system's boundaries, even when the task is to predict bulk properties. This behavior suggests that the neural network may have independently discovered a connection between boundaries and bulk, without having been provided any built-in knowledge of quantum physics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.