Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Intersection of Reinforcement Learning and Bayesian Optimization for Intelligent Control of Industrial Processes: A Safe MPC-based DPG using Multi-Objective BO (2507.09864v1)

Published 14 Jul 2025 in eess.SY, cs.AI, cs.LG, cs.SY, and math.OC

Abstract: Model Predictive Control (MPC)-based Reinforcement Learning (RL) offers a structured and interpretable alternative to Deep Neural Network (DNN)-based RL methods, with lower computational complexity and greater transparency. However, standard MPC-RL approaches often suffer from slow convergence, suboptimal policy learning due to limited parameterization, and safety issues during online adaptation. To address these challenges, we propose a novel framework that integrates MPC-RL with Multi-Objective Bayesian Optimization (MOBO). The proposed MPC-RL-MOBO utilizes noisy evaluations of the RL stage cost and its gradient, estimated via a Compatible Deterministic Policy Gradient (CDPG) approach, and incorporates them into a MOBO algorithm using the Expected Hypervolume Improvement (EHVI) acquisition function. This fusion enables efficient and safe tuning of the MPC parameters to achieve improved closed-loop performance, even under model imperfections. A numerical example demonstrates the effectiveness of the proposed approach in achieving sample-efficient, stable, and high-performance learning for control systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.