Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
106 tokens/sec
Gemini 2.5 Pro Premium
53 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
109 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
515 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Your Pretrained Model Tells the Difficulty Itself: A Self-Adaptive Curriculum Learning Paradigm for Natural Language Understanding (2507.09758v1)

Published 13 Jul 2025 in cs.CL and cs.LG

Abstract: Curriculum learning is a widely adopted training strategy in NLP, where models are exposed to examples organized by increasing difficulty to enhance learning efficiency and performance. However, most existing approaches rely on manually defined difficulty metrics -- such as text length -- which may not accurately reflect the model's own perspective. To overcome this limitation, we present a self-adaptive curriculum learning paradigm that prioritizes fine-tuning examples based on difficulty scores predicted by pre-trained LLMs (PLMs) themselves. Building on these scores, we explore various training strategies that differ in the ordering of examples for the fine-tuning: from easy-to-hard, hard-to-easy, to mixed sampling. We evaluate our method on four natural language understanding (NLU) datasets covering both binary and multi-class classification tasks. Experimental results show that our approach leads to faster convergence and improved performance compared to standard random sampling.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.