Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Signed Graph Learning: Algorithms and Theory (2507.09717v1)

Published 13 Jul 2025 in stat.ML, cs.LG, and eess.SP

Abstract: Real-world data is often represented through the relationships between data samples, forming a graph structure. In many applications, it is necessary to learn this graph structure from the observed data. Current graph learning research has primarily focused on unsigned graphs, which consist only of positive edges. However, many biological and social systems are better described by signed graphs that account for both positive and negative interactions, capturing similarity and dissimilarity between samples. In this paper, we develop a method for learning signed graphs from a set of smooth signed graph signals. Specifically, we employ the net Laplacian as a graph shift operator (GSO) to define smooth signed graph signals as the outputs of a low-pass signed graph filter defined by the net Laplacian. The signed graph is then learned by formulating a non-convex optimization problem where the total variation of the observed signals is minimized with respect to the net Laplacian. The proposed problem is solved using alternating direction method of multipliers (ADMM) and a fast algorithm reducing the per-ADMM iteration complexity from quadratic to linear in the number of nodes is introduced. Furthermore, theoretical proofs of convergence for the algorithm and a bound on the estimation error of the learned net Laplacian as a function of sample size, number of nodes, and graph topology are provided. Finally, the proposed method is evaluated on simulated data and gene regulatory network inference problem and compared to existing signed graph learning methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

alphaXiv