Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Enhancing Stereo Sound Event Detection with BiMamba and Pretrained PSELDnet (2507.09570v1)

Published 13 Jul 2025 in eess.AS and cs.SD

Abstract: Pre-training methods have greatly improved the performance of sound event localization and detection (SELD). However, existing Transformer-based models still face high computational cost. To solve this problem, we present a stereo SELD system using a pre-trained PSELDnet and a bidirectional Mamba sequence model. Specifically, we replace the Conformer module with a BiMamba module. We also use asymmetric convolutions to better capture the time and frequency relationships in the audio signal. Test results on the DCASE2025 Task 3 development dataset show that our method performs better than both the baseline and the original PSELDnet with a Conformer decoder. In addition, the proposed model costs fewer computing resources than the baselines. These results show that the BiMamba architecture is effective for solving key challenges in SELD tasks. The source code is publicly accessible at https://github.com/ alexandergwm/DCASE2025 TASK3 Stereo PSELD Mamba.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Github Logo Streamline Icon: https://streamlinehq.com