Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Adversarial Activation Patching: A Framework for Detecting and Mitigating Emergent Deception in Safety-Aligned Transformers (2507.09406v1)

Published 12 Jul 2025 in cs.LG and cs.AI

Abstract: LLMs aligned for safety through techniques like reinforcement learning from human feedback (RLHF) often exhibit emergent deceptive behaviors, where outputs appear compliant but subtly mislead or omit critical information. This paper introduces adversarial activation patching, a novel mechanistic interpretability framework that leverages activation patching as an adversarial tool to induce, detect, and mitigate such deception in transformer-based models. By sourcing activations from "deceptive" prompts and patching them into safe forward passes at specific layers, we simulate vulnerabilities and quantify deception rates. Through toy neural network simulations across multiple scenarios (e.g., 1000 trials per setup), we demonstrate that adversarial patching increases deceptive outputs to 23.9% from a 0% baseline, with layer-specific variations supporting our hypotheses. We propose six hypotheses, including transferability across models, exacerbation in multimodal settings, and scaling effects. An expanded literature review synthesizes over 20 key works in interpretability, deception, and adversarial attacks. Mitigation strategies, such as activation anomaly detection and robust fine-tuning, are detailed, alongside ethical considerations and future research directions. This work advances AI safety by highlighting patching's dual-use potential and provides a roadmap for empirical studies on large-scale models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube