Papers
Topics
Authors
Recent
Search
2000 character limit reached

Correcting the LogQ Correction: Revisiting Sampled Softmax for Large-Scale Retrieval

Published 12 Jul 2025 in cs.IR | (2507.09331v1)

Abstract: Two-tower neural networks are a popular architecture for the retrieval stage in recommender systems. These models are typically trained with a softmax loss over the item catalog. However, in web-scale settings, the item catalog is often prohibitively large, making full softmax infeasible. A common solution is sampled softmax, which approximates the full softmax using a small number of sampled negatives. One practical and widely adopted approach is to use in-batch negatives, where negatives are drawn from items in the current mini-batch. However, this introduces a bias: items that appear more frequently in the batch (i.e., popular items) are penalized more heavily. To mitigate this issue, a popular industry technique known as logQ correction adjusts the logits during training by subtracting the log-probability of an item appearing in the batch. This correction is derived by analyzing the bias in the gradient and applying importance sampling, effectively twice, using the in-batch distribution as a proposal distribution. While this approach improves model quality, it does not fully eliminate the bias. In this work, we revisit the derivation of logQ correction and show that it overlooks a subtle but important detail: the positive item in the denominator is not Monte Carlo-sampled - it is always present with probability 1. We propose a refined correction formula that accounts for this. Notably, our loss introduces an interpretable sample weight that reflects the model's uncertainty - the probability of misclassification under the current parameters. We evaluate our method on both public and proprietary datasets, demonstrating consistent improvements over the standard logQ correction.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.