Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

SEALGuard: Safeguarding the Multilingual Conversations in Southeast Asian Languages for LLM Software Systems (2507.08898v3)

Published 11 Jul 2025 in cs.CL and cs.AI

Abstract: Safety alignment is critical for LLM-powered systems. While recent LLM-powered guardrail approaches such as LlamaGuard achieve high detection accuracy of unsafe inputs written in English (e.g., ``How to create a bomb?''), they struggle with multilingual unsafe inputs. This limitation leaves LLM systems vulnerable to unsafe and jailbreak prompts written in low-resource languages such as those in Southeast Asia. This paper introduces SEALGuard, a multilingual guardrail designed to improve the safety alignment across diverse languages. It aims to address the multilingual safety alignment gap of existing guardrails and ensure effective filtering of unsafe and jailbreak prompts in LLM-powered systems. We adapt a general-purpose multilingual LLM into a multilingual guardrail using low-rank adaptation (LoRA). We construct SEALSBench, a large-scale multilingual safety alignment dataset containing over 260,000 prompts in ten languages, including safe, unsafe, and jailbreak cases. We evaluate SEALGuard against state-of-the-art guardrails such as LlamaGuard on this benchmark. Our findings show that multilingual unsafe and jailbreak prompts substantially degrade the performance of the state-of-the-art LlamaGuard, which experiences a drop in Defense Success Rate (DSR) by 9% and 18%, respectively, compared to its performance on English-only prompts. In contrast, SEALGuard outperforms existing guardrails in detecting multilingual unsafe and jailbreak prompts, improving DSR by 48% over LlamaGuard and achieving the best DSR, precision, and F1-score. Our ablation study further reveals the contributions of adaptation strategies and model size to the overall performance of SEALGuard. We release our pre-trained model and benchmark at https://github.com/awsm-research/SEALGuard to support further research.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube