Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
36 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

wd1: Weighted Policy Optimization for Reasoning in Diffusion Language Models (2507.08838v1)

Published 7 Jul 2025 in cs.LG, cs.AI, and stat.ML

Abstract: Improving the reasoning capabilities of diffusion-based LLMs (dLLMs) through reinforcement learning (RL) remains an open problem. The intractability of dLLMs likelihood function necessitates approximating the current, old, and reference policy likelihoods at each policy optimization step. This reliance introduces additional computational overhead and lead to potentially large bias -- particularly when approximation errors occur in the denominator of policy ratios used for importance sampling. To mitigate these issues, we introduce $\mathtt{wd1}$, a novel policy optimization approach that reformulates the objective as a weighted likelihood, requiring only a single approximation for the current parametrized policy likelihood. Experiments on widely used reasoning benchmarks demonstrate that $\mathtt{wd1}$, without supervised fine-tuning (SFT) or any supervised data, outperforms existing RL methods for dLLMs, achieving up to 16% higher accuracy. $\mathtt{wd1}$ delivers additional computational gains, including reduced training time and fewer function evaluations (NFEs) per gradient step. These findings, combined with the simplicity of method's implementation and R1-Zero-like training (no SFT), position $\mathtt{wd1}$ as a more effective and efficient method for applying RL to dLLMs reasoning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com