Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Krul: Efficient State Restoration for Multi-turn Conversations with Dynamic Cross-layer KV Sharing (2507.08045v1)

Published 10 Jul 2025 in cs.CL and cs.AI

Abstract: Efficient state restoration in multi-turn conversations with LLMs remains a critical challenge, primarily due to the overhead of recomputing or loading full key-value (KV) caches for all historical tokens. To address this, existing approaches compress KV caches across adjacent layers with highly similar attention patterns. However, these methods often apply a fixed compression scheme across all conversations, selecting the same layer pairs for compression without considering conversation-specific attention dynamics. This static strategy overlooks variability in attention pattern similarity across different conversations, which can lead to noticeable accuracy degradation. We present Krul, a multi-turn LLM inference system that enables accurate and efficient KV cache restoration. Krul dynamically selects compression strategies based on attention similarity across layer pairs and uses a recomputation-loading pipeline to restore the KV cache. It introduces three key innovations: 1) a preemptive compression strategy selector to preserve critical context for future conversation turns and selects a customized strategy for the conversation; 2) a token-wise heterogeneous attention similarity estimator to mitigate the attention similarity computation and storage overhead during model generation; 3) a bubble-free restoration scheduler to reduce potential bubbles brought by the imbalance of recomputing and loading stream due to compressed KV caches. Empirical evaluations on real-world tasks demonstrate that Krul achieves a 1.5x-2.68x reduction in time-to-first-token (TTFT) and a 1.33x-2.35x reduction in KV cache storage compared to state-of-the-art methods without compromising generation quality.

Summary

We haven't generated a summary for this paper yet.