Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
113 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Instance-Wise Monotonic Calibration by Constrained Transformation (2507.06516v1)

Published 9 Jul 2025 in cs.LG and stat.ML

Abstract: Deep neural networks often produce miscalibrated probability estimates, leading to overconfident predictions. A common approach for calibration is fitting a post-hoc calibration map on unseen validation data that transforms predicted probabilities. A key desirable property of the calibration map is instance-wise monotonicity (i.e., preserving the ranking of probability outputs). However, most existing post-hoc calibration methods do not guarantee monotonicity. Previous monotonic approaches either use an under-parameterized calibration map with limited expressive ability or rely on black-box neural networks, which lack interpretability and robustness. In this paper, we propose a family of novel monotonic post-hoc calibration methods, which employs a constrained calibration map parameterized linearly with respect to the number of classes. Our proposed approach ensures expressiveness, robustness, and interpretability while preserving the relative ordering of the probability output by formulating the proposed calibration map as a constrained optimization problem. Our proposed methods achieve state-of-the-art performance across datasets with different deep neural network models, outperforming existing calibration methods while being data and computation-efficient. Our code is available at https://github.com/YunruiZhang/Calibration-by-Constrained-Transformation

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets