Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
10 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MixAssist: An Audio-Language Dataset for Co-Creative AI Assistance in Music Mixing (2507.06329v1)

Published 8 Jul 2025 in cs.SD, cs.AI, and eess.AS

Abstract: While AI presents significant potential for enhancing music mixing and mastering workflows, current research predominantly emphasizes end-to-end automation or generation, often overlooking the collaborative and instructional dimensions vital for co-creative processes. This gap leaves artists, particularly amateurs seeking to develop expertise, underserved. To bridge this, we introduce MixAssist, a novel audio-language dataset capturing the situated, multi-turn dialogue between expert and amateur music producers during collaborative mixing sessions. Comprising 431 audio-grounded conversational turns derived from 7 in-depth sessions involving 12 producers, MixAssist provides a unique resource for training and evaluating audio-LLMs that can comprehend and respond to the complexities of real-world music production dialogues. Our evaluations, including automated LLM-as-a-judge assessments and human expert comparisons, demonstrate that fine-tuning models such as Qwen-Audio on MixAssist can yield promising results, with Qwen significantly outperforming other tested models in generating helpful, contextually relevant mixing advice. By focusing on co-creative instruction grounded in audio context, MixAssist enables the development of intelligent AI assistants designed to support and augment the creative process in music mixing.

Summary

We haven't generated a summary for this paper yet.