Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Humans overrely on overconfident language models, across languages (2507.06306v1)

Published 8 Jul 2025 in cs.CL, cs.AI, and cs.HC

Abstract: As LLMs are deployed globally, it is crucial that their responses are calibrated across languages to accurately convey uncertainty and limitations. Previous work has shown that LLMs are linguistically overconfident in English, leading users to overrely on confident generations. However, the usage and interpretation of epistemic markers (e.g., 'It's definitely,' 'I think') can differ sharply across languages. Here, we study the risks of multilingual linguistic (mis)calibration, overconfidence, and overreliance across five languages to evaluate the safety of LLMs in a global context. We find that overreliance risks are high across all languages. We first analyze the distribution of LLM-generated epistemic markers, and observe that while LLMs are cross-linguistically overconfident, they are also sensitive to documented linguistic variation. For example, models generate the most markers of uncertainty in Japanese and the most markers of certainty in German and Mandarin. We then measure human reliance rates across languages, finding that while users strongly rely on confident LLM generations in all languages, reliance behaviors differ cross-linguistically: for example, users rely significantly more on expressions of uncertainty in Japanese than in English. Taken together, these results indicate high risk of reliance on overconfident model generations across languages. Our findings highlight the challenges of multilingual linguistic calibration and stress the importance of culturally and linguistically contextualized model safety evaluations.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com