Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attacker's Noise Can Manipulate Your Audio-based LLM in the Real World (2507.06256v1)

Published 7 Jul 2025 in cs.CR, cs.AI, cs.SD, and eess.AS

Abstract: This paper investigates the real-world vulnerabilities of audio-based LLMs (ALLMs), such as Qwen2-Audio. We first demonstrate that an adversary can craft stealthy audio perturbations to manipulate ALLMs into exhibiting specific targeted behaviors, such as eliciting responses to wake-keywords (e.g., "Hey Qwen"), or triggering harmful behaviors (e.g. "Change my calendar event"). Subsequently, we show that playing adversarial background noise during user interaction with the ALLMs can significantly degrade the response quality. Crucially, our research illustrates the scalability of these attacks to real-world scenarios, impacting other innocent users when these adversarial noises are played through the air. Further, we discuss the transferrability of the attack, and potential defensive measures.

Summary

We haven't generated a summary for this paper yet.