Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust One-step Speech Enhancement via Consistency Distillation (2507.05688v1)

Published 8 Jul 2025 in eess.AS and cs.SD

Abstract: Diffusion models have shown strong performance in speech enhancement, but their real-time applicability has been limited by multi-step iterative sampling. Consistency distillation has recently emerged as a promising alternative by distilling a one-step consistency model from a multi-step diffusion-based teacher model. However, distilled consistency models are inherently biased towards the sampling trajectory of the teacher model, making them less robust to noise and prone to inheriting inaccuracies from the teacher model. To address this limitation, we propose ROSE-CD: Robust One-step Speech Enhancement via Consistency Distillation, a novel approach for distilling a one-step consistency model. Specifically, we introduce a randomized learning trajectory to improve the model's robustness to noise. Furthermore, we jointly optimize the one-step model with two time-domain auxiliary losses, enabling it to recover from teacher-induced errors and surpass the teacher model in overall performance. This is the first pure one-step consistency distillation model for diffusion-based speech enhancement, achieving 54 times faster inference speed and superior performance compared to its 30-step teacher model. Experiments on the VoiceBank-DEMAND dataset demonstrate that the proposed model achieves state-of-the-art performance in terms of speech quality. Moreover, its generalization ability is validated on both an out-of-domain dataset and real-world noisy recordings.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com