Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Malliavin calculus approach to score functions in diffusion generative models (2507.05550v1)

Published 8 Jul 2025 in stat.ML, cs.LG, and math.PR

Abstract: Score-based diffusion generative models have recently emerged as a powerful tool for modelling complex data distributions. These models aim at learning the score function, which defines a map from a known probability distribution to the target data distribution via deterministic or stochastic differential equations (SDEs). The score function is typically estimated from data using a variety of approximation techniques, such as denoising or sliced score matching, Hyv\"arien's method, or Schr\"odinger bridges. In this paper, we derive an exact, closed form, expression for the score function for a broad class of nonlinear diffusion generative models. Our approach combines modern stochastic analysis tools such as Malliavin derivatives and their adjoint operators (Skorokhod integrals or Malliavin Divergence) with a new Bismut-type formula. The resulting expression for the score function can be written entirely in terms of the first and second variation processes, with all Malliavin derivatives systematically eliminated, thereby enhancing its practical applicability. The theoretical framework presented in this work offers a principled foundation for advancing score estimation methods in generative modelling, enabling the design of new sampling algorithms for complex probability distributions. Our results can be extended to broader classes of stochastic differential equations, opening new directions for the development of score-based diffusion generative models.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com