Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Evolutionary and Coevolutionary Multi-Agent Design Choices and Dynamics (2507.05534v1)

Published 7 Jul 2025 in cs.NE

Abstract: We investigate two representation alternatives for the controllers of teams of cyber agents. We combine these controller representations with different evolutionary algorithms, one of which introduces a novel LLM-supported mutation operator. Using a cyber security scenario, we evaluate agent learning when one side is trained to compete against a side that does not evolve and when two sides coevolve with each other. This allows us to quantify the relative merits and tradeoffs of representation and algorithm combinations in terms of team performance. Our versions of grammatical evolution algorithms using grammars that allow a controller to be expressed in code-like logic can achieve the best team performance. The scenario also allows us to compare the performance impact and dynamics of coevolution versus evolution under different combinations. Across the algorithms and representations, we observe that coevolution reduces the performance highs and lows of both sides while it induces fluctuations on both sides. In contrast, when only one-side is optimized, performance peaks are higher and is more sustained than when both sides are optimized with coevolution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.