Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Regret Reduces to Kernelized Static Regret (2507.05478v1)

Published 7 Jul 2025 in cs.LG and stat.ML

Abstract: We study dynamic regret in online convex optimization, where the objective is to achieve low cumulative loss relative to an arbitrary benchmark sequence. By observing that competing with an arbitrary sequence of comparators $u_{1},\ldots,u_{T}$ in $\mathcal{W}\subseteq\mathbb{R}{d}$ is equivalent to competing with a fixed comparator function $u:[1,T]\to \mathcal{W}$, we frame dynamic regret minimization as a static regret problem in a function space. By carefully constructing a suitable function space in the form of a Reproducing Kernel Hilbert Space (RKHS), our reduction enables us to recover the optimal $R_{T}(u_{1},\ldots,u_{T}) = \mathcal{O}(\sqrt{\sum_{t}|u_{t}-u_{t-1}|T})$ dynamic regret guarantee in the setting of linear losses, and yields new scale-free and directionally-adaptive dynamic regret guarantees. Moreover, unlike prior dynamic-to-static reductions -- which are valid only for linear losses -- our reduction holds for any sequence of losses, allowing us to recover $\mathcal{O}\big(|u|2+d_{\mathrm{eff}}(\lambda)\ln T\big)$ bounds in exp-concave and improper linear regression settings, where $d_{\mathrm{eff}}(\lambda)$ is a measure of complexity of the RKHS. Despite working in an infinite-dimensional space, the resulting reduction leads to algorithms that are computable in practice, due to the reproducing property of RKHSs.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com