Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Adversarial Machine Learning Attacks on Financial Reporting via Maximum Violated Multi-Objective Attack (2507.05441v1)

Published 7 Jul 2025 in cs.LG and stat.ML

Abstract: Bad actors, primarily distressed firms, have the incentive and desire to manipulate their financial reports to hide their distress and derive personal gains. As attackers, these firms are motivated by potentially millions of dollars and the availability of many publicly disclosed and used financial modeling frameworks. Existing attack methods do not work on this data due to anti-correlated objectives that must both be satisfied for the attacker to succeed. We introduce Maximum Violated Multi-Objective (MVMO) attacks that adapt the attacker's search direction to find $20\times$ more satisfying attacks compared to standard attacks. The result is that in $\approx50\%$ of cases, a company could inflate their earnings by 100-200%, while simultaneously reducing their fraud scores by 15%. By working with lawyers and professional accountants, we ensure our threat model is realistic to how such frauds are performed in practice.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com