Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Narrowing the Gap: Supervised Fine-Tuning of Open-Source LLMs as a Viable Alternative to Proprietary Models for Pedagogical Tools (2507.05305v1)

Published 7 Jul 2025 in cs.CY, cs.AI, cs.CL, and cs.SE

Abstract: Frontier LLMs like ChatGPT and Gemini can decipher cryptic compiler errors for novice programmers, but their computational scale, cost, and tendency to over-assist make them problematic for widespread pedagogical adoption. This work demonstrates that smaller, specialised LLMs, enhanced via Supervised Fine-Tuning (SFT), present a more viable alternative for educational tools. We utilise a new dataset of 40,000 C compiler error explanations, derived from real introductory programming (CS1/2) student-generated programming errors, which we used to fine-tune three open-source models: Qwen3-4B, Llama-3.1-8B, and Qwen3-32B. We performed a dual evaluation, combining expert human reviews with a large-scale automated analysis of 8,000 responses using a validated LLM-as-judge ensemble. Our results show that SFT significantly boosts the pedagogical quality of smaller models, achieving performance comparable to much larger models. We analyse the trade-offs between model size and quality, confirming that fine-tuning compact, efficient models on high-quality, domain-specific data is a potent strategy for creating specialised models to drive educational tools. We provide a replicable methodology to foster broader access to generative AI capabilities in educational contexts.

Summary

We haven't generated a summary for this paper yet.