Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A 3D Machine Learning based Volume Of Fluid scheme without explicit interface reconstruction (2507.05218v1)

Published 7 Jul 2025 in math.NA, cs.LG, and cs.NA

Abstract: We present a machine-learning based Volume Of Fluid method to simulate multi-material flows on three-dimensional domains. One of the novelties of the method is that the flux fraction is computed by evaluating a previously trained neural network and without explicitly reconstructing any local interface approximating the exact one. The network is trained on a purely synthetic dataset generated by randomly sampling numerous local interfaces and which can be adapted to improve the scheme on less regular interfaces when needed. Several strategies to ensure the efficiency of the method and the satisfaction of physical constraints and properties are suggested and formalized. Numerical results on the advection equation are provided to show the performance of the method. We observe numerical convergence as the size of the mesh tends to zero $h=1/N_h\searrow 0$, with a better rate than two reference schemes.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com