From Autonomy to Agency: Agentic Vehicles for Human-Centered Mobility Systems (2507.04996v1)
Abstract: Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Accordingly, autonomous vehicles (AuVs) are defined as systems capable of perceiving their environment and executing preprogrammed tasks independently of external input. However, both research and real-world deployments increasingly showcase vehicles that demonstrate behaviors beyond this definition (including the SAE levels 1 to 6), such as interaction with humans and machines, goal adaptation, contextual reasoning, external tool use, and long-term planning, particularly with the integration of LLMs and agentic AI systems. These developments reveal a conceptual gap between technical autonomy and the broader cognitive and social capabilities needed for future human-centered mobility systems. To address this, we introduce the concept of agentic vehicles (AgVs), referring to vehicles that integrate agentic AI to reason, adapt, and interact within complex environments. This paper presents a systems-level framework to characterize AgVs, focusing on their cognitive and communicative layers and differentiating them from conventional AuVs. It synthesizes relevant advances in agentic AI, robotics, multi-agent systems, and human-machine interaction, and highlights how agentic AI, through high-level reasoning and tool use, can function not merely as computational tools but as interactive agents embedded in mobility ecosystems. The paper concludes by identifying key challenges in the development and governance of AgVs, including safety, real-time control, public acceptance, ethical alignment, and regulatory frameworks.