Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can Video LLMs Refuse to Answer? Alignment for Answerability in Video Large Language Models (2507.04976v1)

Published 7 Jul 2025 in cs.CV and cs.CL

Abstract: In the broader context of deep learning, Multimodal LLMs have achieved significant breakthroughs by leveraging powerful LLMs as a backbone to align different modalities into the language space. A prime exemplification is the development of Video LLMs (Video-LLMs). While numerous advancements have been proposed to enhance the video understanding capabilities of these models, they are predominantly trained on questions generated directly from video content. However, in real-world scenarios, users often pose questions that extend beyond the informational scope of the video, highlighting the need for Video-LLMs to assess the relevance of the question. We demonstrate that even the best-performing Video-LLMs fail to reject unfit questions-not necessarily due to a lack of video understanding, but because they have not been trained to identify and refuse such questions. To address this limitation, we propose alignment for answerability, a framework that equips Video-LLMs with the ability to evaluate the relevance of a question based on the input video and appropriately decline to answer when the question exceeds the scope of the video, as well as an evaluation framework with a comprehensive set of metrics designed to measure model behavior before and after alignment. Furthermore, we present a pipeline for creating a dataset specifically tailored for alignment for answerability, leveraging existing video-description paired datasets.

Summary

We haven't generated a summary for this paper yet.