Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Harnessing Pairwise Ranking Prompting Through Sample-Efficient Ranking Distillation (2507.04820v1)

Published 7 Jul 2025 in cs.IR

Abstract: While Pairwise Ranking Prompting (PRP) with LLMs is one of the most effective zero-shot document ranking methods, it has a quadratic computational complexity with respect to the number of documents to be ranked, as it requires an enumeration over all possible document pairs. Consequently, the outstanding ranking performance of PRP has remained unreachable for most real-world ranking applications. In this work, we propose to harness the effectiveness of PRP through pairwise distillation. Specifically, we distill a pointwise student ranker from pairwise teacher labels generated by PRP, resulting in an efficient student model that retains the performance of PRP with substantially lower computational costs. Furthermore, we find that the distillation process can be made sample-efficient: with only 2% of pairs, we are able to obtain the same performance as using all pairs for teacher labels. Thus, our novel approach provides a solution to harness the ranking performance of PRP without incurring high computational costs during both distillation and serving.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com