Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
135 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

ABench-Physics: Benchmarking Physical Reasoning in LLMs via High-Difficulty and Dynamic Physics Problems (2507.04766v1)

Published 7 Jul 2025 in cs.LG and cs.CL

Abstract: LLMs have shown impressive performance in domains such as mathematics and programming, yet their capabilities in physics remain underexplored and poorly understood. Physics poses unique challenges that demand not only precise computation but also deep conceptual understanding and physical modeling skills. Existing benchmarks often fall short due to limited difficulty, multiple-choice formats, and static evaluation settings that fail to capture physical modeling ability. In this paper, we introduce ABench-Physics, a novel benchmark designed to rigorously evaluate LLMs' physical reasoning and generalization capabilities. ABench-Physics consists of two components: Phy_A, a static set of 400 graduate- or Olympiad-level problems; and Phy_B, a dynamic subset of 100 problems equipped with an automatic variation engine to test model robustness across changing conditions. All questions require precise numerical answers, with strict formatting and tolerance constraints. Our evaluation of several state-of-the-art LLMs reveals substantial performance gaps, highlighting persistent limitations in physical reasoning, especially in generalization to dynamic variants. ABench-Physics provides a challenging and diagnostic framework for advancing scientific reasoning in LLMs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.