Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Just Enough Shifts: Mitigating Over-Refusal in Aligned Language Models with Targeted Representation Fine-Tuning (2507.04250v1)

Published 6 Jul 2025 in cs.LG and cs.AI

Abstract: Safety alignment is crucial for LLMs to resist malicious instructions but often results in over-refusals, where benign prompts are unnecessarily rejected, impairing user experience and model utility. We introduce ACTOR (Activation-Based Training for Over-Refusal Reduction), a robust and compute- and data-efficient training framework that minimizes over-refusals by leveraging internal activation patterns from diverse queries. ACTOR precisely identifies and adjusts the activation components that trigger refusals, providing stronger control over the refusal mechanism. By fine-tuning only a single model layer, ACTOR effectively reduces over-refusals across multiple benchmarks while maintaining the model's ability to handle harmful queries and preserve overall utility.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.