Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
48 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Zero-Shot Cyclic Peptide Design with Composable Geometric Conditions (2507.04225v1)

Published 6 Jul 2025 in cs.LG and cs.AI

Abstract: Cyclic peptides, characterized by geometric constraints absent in linear peptides, offer enhanced biochemical properties, presenting new opportunities to address unmet medical needs. However, designing target-specific cyclic peptides remains underexplored due to limited training data. To bridge the gap, we propose CP-Composer, a novel generative framework that enables zero-shot cyclic peptide generation via composable geometric constraints. Our approach decomposes complex cyclization patterns into unit constraints, which are incorporated into a diffusion model through geometric conditioning on nodes and edges. During training, the model learns from unit constraints and their random combinations in linear peptides, while at inference, novel constraint combinations required for cyclization are imposed as input. Experiments show that our model, despite trained with linear peptides, is capable of generating diverse target-binding cyclic peptides, reaching success rates from 38% to 84% on different cyclization strategies.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.