Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
135 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Temporal Chain of Thought: Long-Video Understanding by Thinking in Frames (2507.02001v1)

Published 1 Jul 2025 in cs.LG

Abstract: Despite recent advances in Vision-LLMs (VLMs), long-video understanding remains a challenging problem. Although state-of-the-art long-context VLMs can process around 1000 input frames, they still struggle to effectively leverage this sequence length, and succumb to irrelevant distractors within the context window. We present Temporal Chain of Thought, an inference strategy for video question-answering that curates the model's input context. We use the VLM itself to iteratively identify and extract the most relevant frames from the video, which are then used for answering. We demonstrate how leveraging more computation at inference-time to select the most relevant context leads to improvements in accuracy, in agreement with recent work on inference-time scaling of LLMs. Moreover, we achieve state-of-the-art results on 4 diverse video question-answering datasets, showing consistent improvements with 3 different VLMs. In particular, our method shines on longer videos which would not otherwise fit within the model's context window: On longer videos of more than 1 hour on LVBench, our approach using a context window of 32K outperforms the same VLM using standard inference with a 700K context window by 2.8 points.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.