Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HERCULES: Hardware accElerator foR stoChastic schedULing in hEterogeneous Systems (2507.01113v1)

Published 1 Jul 2025 in cs.DC, cs.SY, and eess.SY

Abstract: Efficient workload scheduling is a critical challenge in modern heterogeneous computing environments, particularly in high-performance computing (HPC) systems. Traditional software-based schedulers struggle to efficiently balance workload distribution due to high scheduling overhead, lack of adaptability to dynamic workloads, and suboptimal resource utilization. These pitfalls are compounded in heterogeneous systems, where differing computational elements can have vastly different performance profiles. To resolve these hindrances, we present a novel FPGA-based accelerator for stochastic online scheduling (SOS). We modify a greedy cost selection assignment policy by adapting existing cost equations to engage with discretized time before implementing them into a hardware accelerator design. Our design leverages hardware parallelism, precalculation, and precision quantization to reduce job scheduling latency. By introducing a hardware-accelerated approach to real-time scheduling, this paper establishes a new paradigm for adaptive scheduling mechanisms in heterogeneous computing systems. The proposed design achieves high throughput, low latency, and energy-efficient operation, offering a scalable alternative to traditional software scheduling methods. Experimental results demonstrate consistent workload distribution, fair machine utilization, and up to 1060x speedup over single-threaded software scheduling policy implementations. This makes the SOS accelerator a strong candidate for deployment in high-performance computing system, deeplearning pipelines, and other performance-critical applications.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com