Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
21 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
230 tokens/sec
2000 character limit reached

VEDA: Efficient LLM Generation Through Voting-based KV Cache Eviction and Dataflow-flexible Accelerator (2507.00797v1)

Published 1 Jul 2025 in cs.AR

Abstract: LLMs excel in natural language processing tasks but pose significant computational and memory challenges for edge deployment due to their intensive resource demands. This work addresses the efficiency of LLM inference by algorithm-hardware-dataflow tri-optimizations. We propose a novel voting-based KV cache eviction algorithm, balancing hardware efficiency and algorithm accuracy by adaptively identifying unimportant kv vectors. From a dataflow perspective, we introduce a flexible-product dataflow and a runtime reconfigurable PE array for matrix-vector multiplication. The proposed approach effectively handles the diverse dimensional requirements and solves the challenges of incrementally varying sequence lengths. Additionally, an element-serial scheduling scheme is proposed for nonlinear operations, such as softmax and layer normalization (layernorm). Results demonstrate a substantial reduction in latency, accompanied by a significant decrease in hardware complexity, from O(N) to O(1). The proposed solution is realized in a custom-designed accelerator, VEDA, which outperforms existing hardware platforms. This research represents a significant advancement in LLM inference on resource-constrained edge devices, facilitating real-time processing, enhancing data privacy, and enabling model customization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com