Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Large Language Models for Spontaneous Speech-Based Suicide Risk Detection (2507.00693v1)

Published 1 Jul 2025 in cs.SD, cs.CL, and eess.AS

Abstract: Early identification of suicide risk is crucial for preventing suicidal behaviors. As a result, the identification and study of patterns and markers related to suicide risk have become a key focus of current research. In this paper, we present the results of our work in the 1st SpeechWellness Challenge (SW1), which aims to explore speech as a non-invasive and easily accessible mental health indicator for identifying adolescents at risk of suicide.Our approach leverages LLM as the primary tool for feature extraction, alongside conventional acoustic and semantic features. The proposed method achieves an accuracy of 74\% on the test set, ranking first in the SW1 challenge. These findings demonstrate the potential of LLM-based methods for analyzing speech in the context of suicide risk assessment.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com