Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 236 tok/s Pro
2000 character limit reached

Unleashing the Potential of All Test Samples: Mean-Shift Guided Test-Time Adaptation (2507.00462v1)

Published 1 Jul 2025 in cs.CV

Abstract: Visual-LLMs (VLMs) like CLIP exhibit strong generalization but struggle with distribution shifts at test time. Existing training-free test-time adaptation (TTA) methods operate strictly within CLIP's original feature space, relying on high-confidence samples while overlooking the potential of low-confidence ones. We propose MS-TTA, a training-free approach that enhances feature representations beyond CLIP's space using a single-step k-nearest neighbors (kNN) Mean-Shift. By refining all test samples, MS-TTA improves feature compactness and class separability, leading to more stable adaptation. Additionally, a cache of refined embeddings further enhances inference by providing Mean Shift enhanced logits. Extensive evaluations on OOD and cross-dataset benchmarks demonstrate that MS-TTA consistently outperforms state-of-the-art training-free TTA methods, achieving robust adaptation without requiring additional training.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube