Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

How large language models judge and influence human cooperation (2507.00088v1)

Published 30 Jun 2025 in physics.soc-ph, cs.AI, and cs.SI

Abstract: Humans increasingly rely on LLMs to support decisions in social settings. Previous work suggests that such tools shape people's moral and political judgements. However, the long-term implications of LLM-based social decision-making remain unknown. How will human cooperation be affected when the assessment of social interactions relies on LLMs? This is a pressing question, as human cooperation is often driven by indirect reciprocity, reputations, and the capacity to judge interactions of others. Here, we assess how state-of-the-art LLMs judge cooperative actions. We provide 21 different LLMs with an extensive set of examples where individuals cooperate -- or refuse cooperating -- in a range of social contexts, and ask how these interactions should be judged. Furthermore, through an evolutionary game-theoretical model, we evaluate cooperation dynamics in populations where the extracted LLM-driven judgements prevail, assessing the long-term impact of LLMs on human prosociality. We observe a remarkable agreement in evaluating cooperation against good opponents. On the other hand, we notice within- and between-model variance when judging cooperation with ill-reputed individuals. We show that the differences revealed between models can significantly impact the prevalence of cooperation. Finally, we test prompts to steer LLM norms, showing that such interventions can shape LLM judgements, particularly through goal-oriented prompts. Our research connects LLM-based advices and long-term social dynamics, and highlights the need to carefully align LLM norms in order to preserve human cooperation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com