Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scaling Human Judgment in Community Notes with LLMs (2506.24118v1)

Published 30 Jun 2025 in cs.CY and cs.SI

Abstract: This paper argues for a new paradigm for Community Notes in the LLM era: an open ecosystem where both humans and LLMs can write notes, and the decision of which notes are helpful enough to show remains in the hands of humans. This approach can accelerate the delivery of notes, while maintaining trust and legitimacy through Community Notes' foundational principle: A community of diverse human raters collectively serve as the ultimate evaluator and arbiter of what is helpful. Further, the feedback from this diverse community can be used to improve LLMs' ability to produce accurate, unbiased, broadly helpful notes--what we term Reinforcement Learning from Community Feedback (RLCF). This becomes a two-way street: LLMs serve as an asset to humans--helping deliver context quickly and with minimal effort--while human feedback, in turn, enhances the performance of LLMs. This paper describes how such a system can work, its benefits, key new risks and challenges it introduces, and a research agenda to solve those challenges and realize the potential of this approach.

Summary

We haven't generated a summary for this paper yet.