Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human-CLAP: Human-perception-based contrastive language-audio pretraining (2506.23553v1)

Published 30 Jun 2025 in eess.AS and cs.SD

Abstract: Contrastive language-audio pretraining (CLAP) is widely used for audio generation and recognition tasks. For example, CLAPScore, which utilizes the similarity of CLAP embeddings, has been a major metric for the evaluation of the relevance between audio and text in text-to-audio. However, the relationship between CLAPScore and human subjective evaluation scores is still unclarified. We show that CLAPScore has a low correlation with human subjective evaluation scores. Additionally, we propose a human-perception-based CLAP called Human-CLAP by training a contrastive language-audio model using the subjective evaluation score. In our experiments, the results indicate that our Human-CLAP improved the Spearman's rank correlation coefficient (SRCC) between the CLAPScore and the subjective evaluation scores by more than 0.25 compared with the conventional CLAP.

Summary

We haven't generated a summary for this paper yet.