Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single Image Inpainting and Super-Resolution with Simultaneous Uncertainty Guarantees by Universal Reproducing Kernels (2506.23221v1)

Published 29 Jun 2025 in cs.LG and cs.CV

Abstract: The paper proposes a statistical learning approach to the problem of estimating missing pixels of images, crucial for image inpainting and super-resolution problems. One of the main novelties of the method is that it also provides uncertainty quantifications together with the estimated values. Our core assumption is that the underlying data-generating function comes from a Reproducing Kernel Hilbert Space (RKHS). A special emphasis is put on band-limited functions, central to signal processing, which form Paley-Wiener type RKHSs. The proposed method, which we call Simultaneously Guaranteed Kernel Interpolation (SGKI), is an extension and refinement of a recently developed kernel method. An advantage of SGKI is that it not only estimates the missing pixels, but also builds non-asymptotic confidence bands for the unobserved values, which are simultaneously guaranteed for all missing pixels. We also show how to compute these bands efficiently using Schur complements, we discuss a generalization to vector-valued functions, and we present a series of numerical experiments on various datasets containing synthetically generated and benchmark images, as well.

Summary

We haven't generated a summary for this paper yet.