Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Context-Driven Knowledge Graph Completion with Semantic-Aware Relational Message Passing (2506.23141v1)

Published 29 Jun 2025 in cs.AI

Abstract: Semantic context surrounding a triplet $(h, r, t)$ is crucial for Knowledge Graph Completion (KGC), providing vital cues for prediction. However, traditional node-based message passing mechanisms, when applied to knowledge graphs, often introduce noise and suffer from information dilution or over-smoothing by indiscriminately aggregating information from all neighboring edges. To address this challenge, we propose a semantic-aware relational message passing. A core innovation of this framework is the introduction of a \textbf{semantic-aware Top-K neighbor selection strategy}. Specifically, this strategy first evaluates the semantic relevance between a central node and its incident edges within a shared latent space, selecting only the Top-K most pertinent ones. Subsequently, information from these selected edges is effectively fused with the central node's own representation using a \textbf{multi-head attention aggregator} to generate a semantically focused node message. In this manner, our model not only leverages the structure and features of edges within the knowledge graph but also more accurately captures and propagates the contextual information most relevant to the specific link prediction task, thereby effectively mitigating interference from irrelevant information. Extensive experiments demonstrate that our method achieves superior performance compared to existing approaches on several established benchmarks.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com