Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Generalizability of "Competition of Mechanisms: Tracing How Language Models Handle Facts and Counterfactuals" (2506.22977v1)

Published 28 Jun 2025 in cs.CL and cs.LG

Abstract: We present a reproduction study of "Competition of Mechanisms: Tracing How LLMs Handle Facts and Counterfactuals" (Ortu et al., 2024), which investigates competition of mechanisms in LLMs between factual recall and counterfactual in-context repetition. Our study successfully reproduces their primary findings regarding the localization of factual and counterfactual information, the dominance of attention blocks in mechanism competition, and the specialization of attention heads in handling competing information. We reproduce their results on both GPT-2 (Radford et al., 2019) and Pythia 6.9B (Biderman et al., 2023). We extend their work in three significant directions. First, we explore the generalizability of these findings to even larger models by replicating the experiments on Llama 3.1 8B (Grattafiori et al., 2024), discovering greatly reduced attention head specialization. Second, we investigate the impact of prompt structure by introducing variations where we avoid repeating the counterfactual statement verbatim or we change the premise word, observing a marked decrease in the logit for the counterfactual token. Finally, we test the validity of the authors' claims for prompts of specific domains, discovering that certain categories of prompts skew the results by providing the factual prediction token as part of the subject of the sentence. Overall, we find that the attention head ablation proposed in Ortu et al. (2024) is ineffective for domains that are underrepresented in their dataset, and that the effectiveness varies based on model architecture, prompt structure, domain and task.

Summary

We haven't generated a summary for this paper yet.