Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Hierarchical Vision-Language Planning for Multi-Step Humanoid Manipulation (2506.22827v1)

Published 28 Jun 2025 in cs.RO

Abstract: Enabling humanoid robots to reliably execute complex multi-step manipulation tasks is crucial for their effective deployment in industrial and household environments. This paper presents a hierarchical planning and control framework designed to achieve reliable multi-step humanoid manipulation. The proposed system comprises three layers: (1) a low-level RL-based controller responsible for tracking whole-body motion targets; (2) a mid-level set of skill policies trained via imitation learning that produce motion targets for different steps of a task; and (3) a high-level vision-language planning module that determines which skills should be executed and also monitors their completion in real-time using pretrained vision-LLMs (VLMs). Experimental validation is performed on a Unitree G1 humanoid robot executing a non-prehensile pick-and-place task. Over 40 real-world trials, the hierarchical system achieved a 72.5% success rate in completing the full manipulation sequence. These experiments confirm the feasibility of the proposed hierarchical system, highlighting the benefits of VLM-based skill planning and monitoring for multi-step manipulation scenarios. See https://vlp-humanoid.github.io/ for video demonstrations of the policy rollout.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com