Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Linear Mode Connectivity for Transformers (2506.22712v1)

Published 28 Jun 2025 in cs.LG and stat.ML

Abstract: Understanding the geometry of neural network loss landscapes is a central question in deep learning, with implications for generalization and optimization. A striking phenomenon is linear mode connectivity (LMC), where independently trained models can be connected by low- or zero-loss paths, despite appearing to lie in separate loss basins. However, this is often obscured by symmetries in parameter space -- such as neuron permutations -- which make functionally equivalent models appear dissimilar. Prior work has predominantly focused on neuron re-ordering through permutations, but such approaches are limited in scope and fail to capture the richer symmetries exhibited by modern architectures such as Transformers. In this work, we introduce a unified framework that captures four symmetry classes: permutations, semi-permutations, orthogonal transformations, and general invertible maps -- broadening the set of valid reparameterizations and subsuming many previous approaches as special cases. Crucially, this generalization enables, for the first time, the discovery of low- and zero-barrier linear interpolation paths between independently trained Vision Transformers and GPT-2 models. These results reveal deeper structure in the loss landscape and underscore the importance of symmetry-aware analysis for understanding model space geometry.

Summary

We haven't generated a summary for this paper yet.