Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lightning the Night with Generative Artificial Intelligence (2506.22511v1)

Published 26 Jun 2025 in cs.CV, cs.AI, and eess.IV

Abstract: The visible light reflectance data from geostationary satellites is crucial for meteorological observations and plays an important role in weather monitoring and forecasting. However, due to the lack of visible light at night, it is impossible to conduct continuous all-day weather observations using visible light reflectance data. This study pioneers the use of generative diffusion models to address this limitation. Based on the multi-band thermal infrared brightness temperature data from the Advanced Geostationary Radiation Imager (AGRI) onboard the Fengyun-4B (FY4B) geostationary satellite, we developed a high-precision visible light reflectance retrieval model, called Reflectance Diffusion (RefDiff), which enables 0.47~\mu\mathrm{m}, 0.65~\mu\mathrm{m}, and 0.825~\mu\mathrm{m} bands visible light reflectance retrieval at night. Compared to the classical models, RefDiff not only significantly improves accuracy through ensemble averaging but also provides uncertainty estimation. Specifically, the SSIM index of RefDiff can reach 0.90, with particularly significant improvements in areas with complex cloud structures and thick clouds. The model's nighttime retrieval capability was validated using VIIRS nighttime product, demonstrating comparable performance to its daytime counterpart. In summary, this research has made substantial progress in the ability to retrieve visible light reflectance at night, with the potential to expand the application of nighttime visible light data.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com