Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
44 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
105 tokens/sec
DeepSeek R1 via Azure Premium
83 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Towards Text-free Graph Foundation Models: Rethinking Multi-Domain Graph Contrastive Learning (2506.22510v1)

Published 26 Jun 2025 in cs.CL and cs.AI

Abstract: Foundation models have achieved great success in NLP and computer vision (CV). Their success largely stems from the ability to integrate multi-domain knowledge in pre-training and transfer it to target domains. Considering graph data, especially graphs without textual features, is ubiquitous in real-world applications such as social networks and recommendation systems, some researchers have attempted to extend this paradigm to the graph field, aiming to construct graph foundation models. However, unlike CV and NLP, there are huge gaps among the semantics and properties of graphs in different domains, while current works still adopt traditional contrastive pre-training strategies designed in the single-domain scenario, which regard contrastive samples from different domains as equivalent. From experimental investigations, we discovered that inherent domain-specific differences prevent these strategies from effectively absorbing knowledge from different domains to generate informative representations. In this paper, we propose a novel multi-domain pre-training and cross-domain transfer framework, namely MDGCL.In the pre-training stage, we design a contrastive learning strategy to substantially recognize and capture domain differences, and introduce domain tokens to encode domain-level global information. In the downstream stage, we introduce a domain attention mechanism to enable fine-grained domain knowledge transfer. Extensive experiments on five benchmark datasets have demonstrated that our method outperforms state-of-the-art significantly, with the maximum improvement of 19.33\% on accuracy and 19.13\% on Macro-F1 score.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.