Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Analyzing and Fine-Tuning Whisper Models for Multilingual Pilot Speech Transcription in the Cockpit (2506.21990v1)

Published 27 Jun 2025 in cs.CL, cs.AI, cs.LG, and eess.AS

Abstract: The developments in transformer encoder-decoder architectures have led to significant breakthroughs in machine translation, Automatic Speech Recognition (ASR), and instruction-based chat machines, among other applications. The pre-trained models were trained on vast amounts of generic data over a few epochs (fewer than five in most cases), resulting in their strong generalization capabilities. Nevertheless, the performance of these models does suffer when applied to niche domains like transcribing pilot speech in the cockpit, which involves a lot of specific vocabulary and multilingual conversations. This paper investigates and improves the transcription accuracy of cockpit conversations with Whisper models. We have collected around 85 minutes of cockpit simulator recordings and 130 minutes of interview recordings with pilots and manually labeled them. The speakers are middle aged men speaking both German and English. To improve the accuracy of transcriptions, we propose multiple normalization schemes to refine the transcripts and improve Word Error Rate (WER). We then employ fine-tuning to enhance ASR performance, utilizing performance-efficient fine-tuning with Low-Rank Adaptation (LoRA). Hereby, WER decreased from 68.49 \% (pretrained whisper Large model without normalization baseline) to 26.26\% (finetuned whisper Large model with the proposed normalization scheme).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.